Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 387
Filtrar
1.
Cancer Discov ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742767

RESUMO

Meningiomas are the most common primary intracranial tumors. Treatments for patients with meningiomas are limited to surgery and radiotherapy, and systemic therapies remain ineffective or experimental. Resistance to radiotherapy is common in high-grade meningiomas and the cell types and signaling mechanisms that drive meningioma tumorigenesis and resistance to radiotherapy are incompletely understood. Here we report NOTCH3 drives meningioma tumorigenesis and resistance to radiotherapy and find that perivascular NOTCH3+ stem cells are conserved across meningiomas from humans, dogs, and mice. Integrating single-cell transcriptomics with lineage tracing and imaging approaches in genetically engineered mouse models and xenografts, we show NOTCH3 drives tumor initiating capacity, cell proliferation, angiogenesis, and resistance to radiotherapy to increase meningioma growth and reduce survival. To translate these findings to patients, we show that an antibody stabilizing the extracellular negative regulatory region of NOTCH3 blocks meningioma tumorigenesis and sensitizes meningiomas to radiotherapy, reducing tumor growth and improving survival.

2.
Neuro Oncol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695575

RESUMO

Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and the rising availability of neuroimaging. While most exhibit non-malignant behaviour, a subset of meningiomas are biologically aggressive and lead to significant neurological morbidity and mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official WHO (cIMPACT-NOW) working group. There also remains clinical equipoise on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas (ICOM) including field-leading experts, have prepared a comprehensive consensus narrative review directed towards clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality of life studies, and management strategies for unique meningioma patient populations. In each section we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.

3.
Acta Neuropathol Commun ; 12(1): 42, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500181

RESUMO

Central nervous system (CNS) embryonal tumors are a heterogeneous group of high-grade malignancies, and the increasing clinical use of methylation profiling and next-generation sequencing has led to the identification of molecularly distinct subtypes. One proposed tumor type, CNS tumor with BRD4::LEUTX fusion, has been described. As only a few CNS tumors with BRD4::LEUTX fusions have been described, we herein characterize a cohort of 9 such cases (4 new, 5 previously published) to further describe their clinicopathologic and molecular features. We demonstrate that CNS embryonal tumor with BRD4::LEUTX fusion comprises a well-defined methylation class/cluster. We find that patients are young (4 years or younger), with large tumors at variable locations, and frequently with evidence of leptomeningeal/cerebrospinal fluid (CSF) dissemination. Histologically, tumors were highly cellular with high-grade embryonal features. Immunohistochemically, 5/5 cases showed synaptophysin and 4/5 showed OLIG2 expression, thus overlapping with CNS neuroblastoma, FOXR2-activated. DNA copy number profiles were generally flat; however, two tumors had chromosome 1q gains. No recurring genomic changes, besides the presence of the fusion, were found. The LEUTX portion of the fusion transcript was constant in all cases assessed, while the BRD4 portion varied but included a domain with proto-oncogenic activity in all cases. Two patients with clinical follow up available had tumors with excellent response to chemotherapy. Two of our patients were alive without evidence of recurrence or progression after gross total resection and chemotherapy at 16 and 33 months. One patient relapsed, and the last of our four patients died of disease one month after diagnosis. Overall, this case series provides additional evidence for this as a distinct tumor type defined by the presence of a specific fusion as well as a distinct DNA methylation signature. Studies on larger series are required to further characterize these tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Neoplasias Embrionárias de Células Germinativas , Humanos , Neoplasias Encefálicas/patologia , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias Embrionárias de Células Germinativas/genética , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , Fatores de Transcrição Forkhead , Proteínas de Homeodomínio
4.
Brain Pathol ; : e13256, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523251

RESUMO

Meningeal solitary fibrous tumors (SFT) are rare and have a high frequency of local recurrence and distant metastasis. In a cohort of 126 patients (57 female, 69 male; mean age at surgery 53.0 years) with pathologically confirmed meningeal SFTs with extended clinical follow-up (median 9.9 years; range 15 days-43 years), we performed extensive molecular characterization including genome-wide DNA methylation profiling (n = 80) and targeted TERT promoter mutation testing (n = 98). Associations were examined with NAB2::STAT6 fusion status (n = 101 cases; 51 = ex5-7::ex16-17, 26 = ex4::ex2-3; 12 = ex2-3::exANY/other and 12 = no fusion) and placed in the context of 2021 Central Nervous System (CNS) WHO grade. NAB2::STAT6 fusion breakpoints (fusion type) were significantly associated with metastasis-free survival (MFS) (p = 0.03) and, on multivariate analysis, disease-specific survival (DSS) when adjusting for CNS WHO grade (p = 0.03). DNA methylation profiling revealed three distinct clusters: Cluster 1 (n = 38), Cluster 2 (n = 22), and Cluster 3 (n = 20). Methylation clusters were significantly associated with fusion type (p < 0.001), with Cluster 2 harboring ex4::ex2-3 fusion in 16 (of 20; 80.0%), nearly all TERT promoter mutations (7 of 8; 87.5%), and predominantly an "SFT" histologic phenotype (15 of 22; 68.2%). Clusters 1 and 3 were less distinct, both dominated by tumors having ex5-7::ex16-17 fusion (respectively, 25 of 33; 75.8%, and 12 of 18; 66.7%) and with variable histological phenotypes. Methylation clusters were significantly associated with MFS (p = 0.027), but not overall survival (OS). In summary, NAB2::STAT6 fusion type was significantly associated with MFS and DSS, suggesting that tumors with an ex5::ex16-17 fusion may have inferior patient outcomes. Methylation clusters were significantly associated with fusion type, TERT promoter mutation status, histologic phenotype, and MFS.

6.
Nat Commun ; 15(1): 477, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216572

RESUMO

Schwann cell tumors are the most common cancers of the peripheral nervous system and can arise in patients with neurofibromatosis type-1 (NF-1) or neurofibromatosis type-2 (NF-2). Functional interactions between NF1 and NF2 and broader mechanisms underlying malignant transformation of the Schwann lineage are unclear. Here we integrate bulk and single-cell genomics, biochemistry, and pharmacology across human samples, cell lines, and mouse allografts to identify cellular de-differentiation mechanisms driving malignant transformation and treatment resistance. We find DNA methylation groups of Schwann cell tumors can be distinguished by differentiation programs that correlate with response to the MEK inhibitor selumetinib. Functional genomic screening in NF1-mutant tumor cells reveals NF2 loss and PAK activation underlie selumetinib resistance, and we find that concurrent MEK and PAK inhibition is effective in vivo. These data support a de-differentiation paradigm underlying malignant transformation and treatment resistance of Schwann cell tumors and elucidate a functional link between NF1 and NF2.


Assuntos
Neurilemoma , Neurofibromatoses , Neurofibromatose 1 , Neurofibromatose 2 , Animais , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neurilemoma/genética , Neurilemoma/patologia , Neurofibromatoses/metabolismo , Neurofibromatoses/patologia , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Neurofibromatose 2/genética , Neurofibromatose 2/patologia , Células de Schwann/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
7.
Nat Commun ; 15(1): 476, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216587

RESUMO

Mechanisms specifying cancer cell states and response to therapy are incompletely understood. Here we show epigenetic reprogramming shapes the cellular landscape of schwannomas, the most common tumors of the peripheral nervous system. We find schwannomas are comprised of 2 molecular groups that are distinguished by activation of neural crest or nerve injury pathways that specify tumor cell states and the architecture of the tumor immune microenvironment. Moreover, we find radiotherapy is sufficient for interconversion of neural crest schwannomas to immune-enriched schwannomas through epigenetic and metabolic reprogramming. To define mechanisms underlying schwannoma groups, we develop a technique for simultaneous interrogation of chromatin accessibility and gene expression coupled with genetic and therapeutic perturbations in single-nuclei. Our results elucidate a framework for understanding epigenetic drivers of tumor evolution and establish a paradigm of epigenetic and metabolic reprograming of cancer cells that shapes the immune microenvironment in response to radiotherapy.


Assuntos
Neurilemoma , Humanos , Neurilemoma/genética , Neurilemoma/patologia , Epigênese Genética , Reprogramação Celular/genética , Microambiente Tumoral/genética
8.
J Neurosurg Case Lessons ; 7(5)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285975

RESUMO

BACKGROUND: Neuromuscular choristomas (NMCs) are rare tumors involving aberrant intercalation of muscle fibers into peripheral nerves, most commonly the sciatic nerve. Although benign, these lesions risk developing into NMCs with desmoid-type fibrosis (NMC-DTFs), aggressive lesions potentially requiring amputation. Currently, information on NMCs and the link between NMCs and NMC-DTFs is limited in adults, with the majority of cases reported in children. We present the case of a 66-year-old male with a sciatic NMC alongside a Preferred Reporting Items for Systematic Reviews and Meta-Analyses-based systematic review of similar cases to better characterize this lesion in the adult population. OBSERVATIONS: A male presented with 10 years of progressive left lower-extremity weakness and paresthesia, and a mildly enlarged proximal sciatic nerve was discovered on magnetic resonance imaging. He underwent left sciatic fascicular nerve biopsy, with histopathological examination identifying the lesion as an NMC. The literature review revealed that our case, alongside other cases of adults with NMCs, shared characteristics similar to NMCs in the pediatric population. LESSONS: More comprehensive studies of adults with NMCs are needed, as the current literature contains limited information concerning disease course, diagnostic characteristics, and treatment. Furthermore, NMCs in adults should be handled with care because of the increased likelihood of transformation to NMC-DTF after surgical intervention.

9.
Neuro Oncol ; 26(2): 335-347, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37758193

RESUMO

BACKGROUND: Central nervous system (CNS) WHO grade 2 low-grade glioma (LGG) patients are at high risk for recurrence and with unfavorable long-term prognosis due to the treatment resistance and malignant transformation to high-grade glioma. Considering the relatively intact systemic immunity and slow-growing nature, immunotherapy may offer an effective treatment option for LGG patients. METHODS: We conducted a prospective, randomized pilot study to evaluate the safety and immunological response of the multipeptide IMA950 vaccine with agonistic anti-CD27 antibody, varlilumab, in CNS WHO grade 2 LGG patients. Patients were randomized to receive combination therapy with IMA950 + poly-ICLC and varlilumab (Arm 1) or IMA950 + poly-ICLC (Arm 2) before surgery, followed by adjuvant vaccines. RESULTS: A total of 14 eligible patients were enrolled in the study. Four patients received pre-surgery vaccines but were excluded from postsurgery vaccines due to the high-grade diagnosis of the resected tumor. No regimen-limiting toxicity was observed. All patients demonstrated a significant increase of anti-IMA950 CD8+ T-cell response postvaccine in the peripheral blood, but no IMA950-reactive CD8+ T cells were detected in the resected tumor. Mass cytometry analyses revealed that adding varlilumab promoted T helper type 1 effector memory CD4+ and effector memory CD8+ T-cell differentiation in the PBMC but not in the tumor microenvironment. CONCLUSION: The combinational immunotherapy, including varlilumab, was well-tolerated and induced vaccine-reactive T-cell expansion in the peripheral blood but without a detectable response in the tumor. Further developments of strategies to overcome the blood-tumor barrier are warranted to improve the efficacy of immunotherapy for LGG patients.


Assuntos
Anticorpos Monoclonais Humanizados , Vacinas Anticâncer , Glioma , Peptídeos , Humanos , Projetos Piloto , Leucócitos Mononucleares , Estudos Prospectivos , Glioma/tratamento farmacológico , Diferenciação Celular , Microambiente Tumoral
10.
Neuro Oncol ; 26(3): 407-416, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38146999

RESUMO

Within the last few decades, we have witnessed tremendous advancements in the study of pediatric low-grade gliomas (pLGG), leading to a much-improved understanding of their molecular underpinnings. Consequently, we have achieved successful milestones in developing and implementing targeted therapeutic agents for treating these tumors. However, the community continues to face many unknowns when it comes to the most effective clinical implementation of these novel targeted inhibitors or combinations thereof. Questions encompassing optimal dosing strategies, treatment duration, methods for assessing clinical efficacy, and the identification of predictive biomarkers remain unresolved. Here, we offer the consensus of the international pLGG coalition (iPLGGc) clinical trial working group on these important topics and comment on clinical trial design and endpoint rationale. Throughout, we seek to standardize the global approach to early clinical trials (phase I and II) for pLGG, leading to more consistently interpretable results as well as enhancing the pace of novel therapy development and encouraging an increased focus on functional endpoints as well and quality of life for children faced with this disease.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioma , Adolescente , Criança , Humanos , Adulto Jovem , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Consenso , Glioma/tratamento farmacológico , Glioma/patologia , Qualidade de Vida , Resultado do Tratamento , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Guias de Prática Clínica como Assunto
11.
Acta Neuropathol ; 147(1): 3, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079020

RESUMO

Glioblastoma is a clinically and molecularly heterogeneous disease, and new predictive biomarkers are needed to identify those patients most likely to respond to specific treatments. Through prospective genomic profiling of 459 consecutive primary treatment-naïve IDH-wildtype glioblastomas in adults, we identified a unique subgroup (2%, 9/459) defined by somatic hypermutation and DNA replication repair deficiency due to biallelic inactivation of a canonical mismatch repair gene. The deleterious mutations in mismatch repair genes were often present in the germline in the heterozygous state with somatic inactivation of the remaining allele, consistent with glioblastomas arising due to underlying Lynch syndrome. A subset of tumors had accompanying proofreading domain mutations in the DNA polymerase POLE and resultant "ultrahypermutation". The median age at diagnosis was 50 years (range 27-78), compared with 63 years for the other 450 patients with conventional glioblastoma (p < 0.01). All tumors had histologic features of the giant cell variant of glioblastoma. They lacked EGFR amplification, lacked combined trisomy of chromosome 7 plus monosomy of chromosome 10, and only rarely had TERT promoter mutation or CDKN2A homozygous deletion, which are hallmarks of conventional IDH-wildtype glioblastoma. Instead, they harbored frequent inactivating mutations in TP53, NF1, PTEN, ATRX, and SETD2 and recurrent activating mutations in PDGFRA. DNA methylation profiling revealed they did not align with known reference adult glioblastoma methylation classes, but instead had unique globally hypomethylated epigenomes and mostly classified as "Diffuse pediatric-type high grade glioma, RTK1 subtype, subclass A". Five patients were treated with immune checkpoint blockade, four of whom survived greater than 3 years. The median overall survival was 36.8 months, compared to 15.5 months for the other 450 patients (p < 0.001). We conclude that "De novo replication repair deficient glioblastoma, IDH-wildtype" represents a biologically distinct subtype in the adult population that may benefit from prospective identification and treatment with immune checkpoint blockade.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Criança , Pessoa de Meia-Idade , Idoso , Glioblastoma/genética , Glioblastoma/patologia , Inibidores de Checkpoint Imunológico , Homozigoto , Estudos Prospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Deleção de Sequência , Mutação/genética , Isocitrato Desidrogenase/genética
12.
Res Sq ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546798

RESUMO

Meningeal solitary fibrous tumors (SFTs) are rare mesenchymal neoplasms that are associated with hematogenous metastasis, and the cell states and spatial transcriptomic architecture of SFTs are unknown. Here we use single-cell and spatial RNA sequencing to show SFTs are comprised of regionally distinct gene expression programs that resemble cerebral vascular development and homeostasis. Our results shed light on pathways underlying SFT biology in comparison to other central nervous system tumors and provide a framework for integrating single-cell and spatial transcriptomic data from human cancers and normal tissues.

13.
bioRxiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503127

RESUMO

Meningiomas are the most common primary intracranial tumors1-3. Treatments for patients with meningiomas are limited to surgery and radiotherapy, and systemic therapies remain ineffective or experimental4,5. Resistance to radiotherapy is common in high-grade meningiomas6, and the cell types and signaling mechanisms driving meningioma tumorigenesis or resistance to radiotherapy are incompletely understood. Here we report NOTCH3 drives meningioma tumorigenesis and resistance to radiotherapy and find NOTCH3+ meningioma mural cells are conserved across meningiomas from humans, dogs, and mice. NOTCH3+ cells are restricted to the perivascular niche during meningeal development and homeostasis and in low-grade meningiomas but are expressed throughout high-grade meningiomas that are resistant to radiotherapy. Integrating single-cell transcriptomics with lineage tracing and imaging approaches across mouse genetic and xenograft models, we show NOTCH3 drives tumor initiating capacity, cell proliferation, angiogenesis, and resistance to radiotherapy to increase meningioma growth and reduce survival. An antibody stabilizing the extracellular negative regulatory region of NOTCH37,8 blocks meningioma tumorigenesis and sensitizes meningiomas to radiotherapy, reducing tumor growth and improving survival in preclinical models. In summary, our results identify a conserved cell type and signaling mechanism that underlie meningioma tumorigenesis and resistance to radiotherapy, revealing a new therapeutic vulnerability to treat meningiomas that are resistant to standard interventions.

14.
Neuro Oncol ; 25(12): 2221-2236, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37436963

RESUMO

BACKGROUND: Schwannomas are common peripheral nerve sheath tumors that can cause severe morbidity given their stereotypic intracranial and paraspinal locations. Similar to many solid tumors, schwannomas and other nerve sheath tumors are primarily thought to arise due to aberrant hyperactivation of the RAS growth factor signaling pathway. Here, we sought to further define the molecular pathogenesis of schwannomas. METHODS: We performed comprehensive genomic profiling on a cohort of 96 human schwannomas, as well as DNA methylation profiling on a subset. Functional studies including RNA sequencing, chromatin immunoprecipitation-DNA sequencing, electrophoretic mobility shift assay, and luciferase reporter assays were performed in a fetal glial cell model following transduction with wildtype and tumor-derived mutant isoforms of SOX10. RESULTS: We identified that nearly one-third of sporadic schwannomas lack alterations in known nerve sheath tumor genes and instead harbor novel recurrent in-frame insertion/deletion mutations in SOX10, which encodes a transcription factor responsible for controlling Schwann cell differentiation and myelination. SOX10 indel mutations were highly enriched in schwannomas arising from nonvestibular cranial nerves (eg facial, trigeminal, vagus) and were absent from vestibular nerve schwannomas driven by NF2 mutation. Functional studies revealed these SOX10 indel mutations have retained DNA binding capacity but impaired transactivation of glial differentiation and myelination gene programs. CONCLUSIONS: We thus speculate that SOX10 indel mutations drive a unique subtype of schwannomas by impeding proper differentiation of immature Schwann cells.


Assuntos
Neoplasias de Bainha Neural , Neurilemoma , Neuroma Acústico , Humanos , Mutação INDEL , Ativação Transcricional , Neurilemoma/genética , Neurilemoma/patologia , Neuroma Acústico/patologia , Mutação , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
16.
Res Sq ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37292686

RESUMO

Intratumor heterogeneity underlies cancer evolution and treatment resistance1-5, but targetable mechanisms driving intratumor heterogeneity are poorly understood. Meningiomas are the most common primary intracranial tumors and are resistant to all current medical therapies6,7. High-grade meningiomas cause significant neurological morbidity and mortality and are distinguished from low-grade meningiomas by increased intratumor heterogeneity arising from clonal evolution and divergence8. Here we integrate spatial transcriptomic and spatial protein profiling approaches across high-grade meningiomas to identify genomic, biochemical, and cellular mechanisms linking intratumor heterogeneity to the molecular, temporal, and spatial evolution of cancer. We show divergent intratumor gene and protein expression programs distinguish high-grade meningiomas that are otherwise grouped together by current clinical classification systems. Analyses of matched pairs of primary and recurrent meningiomas reveal spatial expansion of sub-clonal copy number variants underlies treatment resistance. Multiplexed sequential immunofluorescence (seqIF) and spatial deconvolution of meningioma single-cell RNA sequencing show decreased immune infiltration, decreased MAPK signaling, increased PI3K-AKT signaling, and increased cell proliferation drive meningioma recurrence. To translate these findings to clinical practice, we use epigenetic editing and lineage tracing approaches in meningioma organoid models to identify new molecular therapy combinations that target intratumor heterogeneity and block tumor growth. Our results establish a foundation for personalized medical therapy to treat patients with high-grade meningiomas and provide a framework for understanding therapeutic vulnerabilities driving intratumor heterogeneity and tumor evolution.

17.
Endocr Pathol ; 34(3): 273-278, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37268858

RESUMO

PitNETs are usually restricted in their cytodifferentiation to only one of 3 lineages dictated by expression of the pituitary transcription factors (TFs) PIT1, TPIT, or SF1. Tumors that show lineage infidelity and express multiple TFs are rare. We searched the pathology files of 4 institutions for PitNETs with coexpression of PIT1 and SF1. We identified 38 tumors in 21 women and 17 men, average age 53 (range 21-79) years. They represented 1.3 to 2.5% of PitNETs at each center. Acromegaly was the presentation in 26 patients; 2 had central hyperthyroidism associated with growth hormone (GH) excess and one had significantly elevated prolactin (PRL). The remainder had mass lesions with visual deficits, hypopituitarism, and/or headaches. Tumor size ranged from 0.9 to 5 cm; all 7 lesions smaller than 1 cm were associated with acromegaly. Larger lesions frequently invaded the cavernous sinuses. Four cases represented a second attempt at surgical resection. PIT1 was usually diffusely positive but 5 cases had variable (patchy or focal) staining. SF1 reactivity was variable in intensity but diffuse in all but 2 cases. GATA3 data, available in 14 cases, identified diffuse positivity in 5 and focal staining in 1. GH was expressed in all but 5 tumors, PRL and thyrotropin (TSH) were expressed in 14 and 13, respectively, follicle-stimulating hormone (FSH) in 11 of 18, and luteinizing hormone (LH) in 4 of 17. Keratin staining patterns were diffuse perinuclear/membranous in 27, variable perinuclear in 4, and negative in 3; scattered fibrous bodies were seen in 5 and diffuse fibrous bodies in 1. Ki67 labeling index ranged from < 1 to 7.9%. In 3 cases, these tumors represented one of multiple synchronous PitNETs; a separate corticotroph tumor was seen in 2 patients and one patient had 2 additional discrete lesions, a sparsely granulated lactotroph, and a pure gonadotroph tumor comprising a triple tumor. PitNETs expressing PIT1 and SF1 represent multilineage PitNETs. These rare tumors have variable clinical and morphological features, most often presenting as large tumors with GH excess and occasionally as one of multiple synchronous PitNETs of distinct lineages.


Assuntos
Acromegalia , Neoplasias Primárias Múltiplas , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Acromegalia/metabolismo , Neoplasias Primárias Múltiplas/patologia , Tumores Neuroendócrinos/patologia , Hipófise/patologia , Neoplasias Hipofisárias/patologia , Fator Esteroidogênico 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA